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Abstract

Despite growing interest in AI agents across industry and academia, their exe-
cution in an environment is often slow, hampering training, evaluation, and de-
ployment. For example, a game of chess between two state-of-the-art agents may
take hours. A critical bottleneck is that agent behavior unfolds sequentially: each
action requires an API call, and these calls can be time-consuming. Inspired by
speculative execution in microprocessors and speculative decoding in LLM infer-
ence, we propose speculative actions, a lossless framework that predicts likely
actions using faster models, enabling multiple steps to be executed in parallel. We
evaluate this framework across four agentic environments: gaming, e-commerce,
web search, and operating systems. In all cases, speculative actions achieve sub-
stantial accuracy in next-action prediction (up to 50%), translating into significant
reductions in end-to-end latency. Moreover, performance can be further improved
through stronger guessing models, top-K action prediction, multi-step speculation,
and uncertainty-aware optimization, opening a promising path toward deploying
low-latency agentic systems in the real world.

1 Introduction

Large language model (LLM)-driven agents are shifting from single-shot predictions to processes
that run inside rich environments: browsers, operating systems, game engines, e-commerce stacks,
and human workflows. These environments are not incidental; they determine what the agent can
observe and do, gate progress through interfaces and rate limits, and dominate end-to-end latency.
In practice, the agent’s behavior unfolds as a sequence of environment steps (tool calls, MCP server
requests, human-in-the-loop queries, and further LLM invocations), each with non-trivial round-trip
time and cost. As capabilities improve, a new bottleneck emerges: time-to-action in the environment.
Even when accuracy is high, an agent that pauses too long between steps is impractical for interactive
use or high-throughput automation.

OS Tasks
(Abhyankar et al., 2025)

Deep Research
(OpenAI, 2025)

Data Pipeline
(Jin et al., 2025)

Kaggle Chess Game
(Kaggle, 2025)

10–20 min 5–30 min 30–45 min 1 hour

Table 1: Estimated time state-of-the-art AI agents spend on various tasks/environments.

As shown in Table 1, AI agents may require tens of minutes to hours to complete a single run across
different environments, a cost that grows significantly when hundreds or thousands of iterations are
needed for reinforcement learning or prompt optimization (Agrawal et al., 2025).

Fundamentally, this inefficiency arises from the inherently sequential nature of API calls. Thus, we
ask a simple question in this paper:

Must an agent interact with its environment in a strictly sequential manner?
∗Equal contribution
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Our answer is no. Inspired by speculative execution in microprocessors and speculative decoding
for LLM inference, we propose speculative actions: a framework that allows agents to predict and
tentatively pursue the most likely next actions using faster models, while slower ground-truth execu-
tors (powerful LLMs, external tools, or humans) catch up. In effect, the agent stages environment
interactions (prefetching data, launching safe parallel calls, and preparing reversible side effects) so
that validation, not waiting, is the critical path. When those slower evaluators confirm the guesses,
progress has already been made; when they disagree, we execute as usual. The result is an as-if-
sequential, lossless interface with parallel, opportunistic internals.

Concretely, in such agents, speculative actions introduce two roles in the environment loop:

• Actor(s): authoritative but slower executors (e.g., more capable LLMs, external APIs/tools, the
environment’s own responses, or humans) whose outputs materialize the ground truth for correct-
ness and side effects.
• Speculator(s): inexpensive, low-latency models that predict the next environment step, i.e., the

action, its arguments, and the expected observation or state delta. Examples include smaller
LLMs, simplified use of the same LLM with reduced prompts and reasoning steps, and domain
heuristics.

Actor

 = [e2e4]at

Actor

 = [c5c7]at+1
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Figure 1: Illustration of our framework in a chess-playing environment. While the Actor issues an
LLM call to decide the next move, the Speculator uses a faster model to guess it. These guesses
enable parallel API calls for the next steps, and once a guess is verified, the system gains time
through parallelization. The process runs in the backend, ensuring a lossless speedup for the user.

A key design goal is losslessness relative to the environment’s baseline semantics: speculative ac-
tions should not degrade final outcomes versus a strictly sequential agent. We achieve this with (a)
semantic guards (actors confirm equivalence of state transitions before commit), (b) safety envelopes
(only idempotent, reversible, or sandboxed speculative side effects), and (c) repair paths (rollback or
compensating actions when a guess is rejected). In many environments (e.g., web search pipelines,
shopping carts before checkout, and OS-level operations in a sandbox) these patterns are natural and
inexpensive to implement.

Can we guess the next API calls of agents? We show that, in practice, API intents can often
be guessed with reasonable accuracy. In particular, we demonstrate speculative actions across four
environments, each highlighting different aspects of agent latency:

• Turn-based gameplay (e.g., chess): the Speculator can predict the opponent’s move while wait-
ing for its turn. See Fig. 1.
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• E-commerce: while conversing with a human shopper, the Speculator can proactively infer the
shopper’s intent (e.g., returning an item), and safely trigger tool calls in advance (e.g., checking
return eligibility).

• Multi-hop web search: while awaiting results from slow external calls (e.g., Wikipedia), the
Speculator can guess answers from its knowledge base, and execute subsequent search queries.

• Operating systems: speculative, reversible actions react immediately to workload and environ-
ment changes, boosting end-to-end application performance while actors confirm.

Across these settings, we observe substantial acceleration—up to 50% accuracy in predicting the
next API calls and 20% end-to-end lossless speedup. These results are achieved with a simple
implementation using single-step speculation, and can be improved upon with advanced techniques
such as adaptive speculation.

1.1 RelatedWork

Speculation in microprocessors Speculation emerged in computer architecture to increase par-
allelism by executing instructions before their outcomes were resolved (Tomasulo, 1967), rolling
back when predictions were wrong and became central to high-performance processors (Lam &
Wilson, 1992). In light of security vulnerabilities that exploit microarchitectural speculative execu-
tion, (Mambretti et al., 2019) developed Speculator to analyze CPU speculation behavior.

Speculative program execution Thread-level speculation executes sequential program fragments
in parallel. It assumes that those program fragments are independent and can be safely parallelized,
but must roll back and resolve conflicts if it turns out some threads are data dependent (Estebanez
et al., 2016). Recently, (Liargkovas et al., 2023) explored the use of tracing and containment to
speculatively but safely run shell scripts out of order.

Speculative decoding in LLM inference The same predict-verify pattern was recently applied to
large language models. Speculative decoding accelerates autoregressive inference by using a small
draft model to propose tokens that a larger target model verifies in batches, committing correct
ones and regenerating failures (Leviathan et al., 2023; Zhang et al., 2024; Chen et al., 2023). At
the reasoning level, speculation has also been used to accelerate chain-of-thought processes (Wang
et al., 2025b;a; Fu et al., 2025). In all cases, speculation reduces latency in sequential pipelines by
executing likely future steps in parallel with their validation.

Other applications of speculations Speculation has been widely applied in a number of systems
contexts. For example, Speck (Nightingale et al., 2008) uses it to parallelize otherwise sequential se-
curity checks, and AutoBash (Su et al., 2007) uses it to test configuration changes in isolation. More
recently, Farias et al. (2024) developed a speculative, GPU-friendly policy simulation technique for
optimizing supply chain systems. In a similar vein to ours, Hua et al. (2024) and Guan et al. (2025)
applied speculative planning to speedup LLM-based task planning.

But unlike prior work, we propose a speculative framework for entire agentic environments, where
all internal and external tool APIs, MCP-server APIs, LLM APIs, and even human responses can
be speculated. This enables a unified framework capable of achieving lossless speedups in agentic
execution, leading to the efficient training/deployment of AI agents.

2 Framework

An agentic system is usually modeled as a Markov Decision Process (MDP) (st, at), where st denotes
the state and at the agent’s action at step t. This model admits considerable flexibility: an action may
represent a chatbot response, the choice of a tool to invoke, or a button clicked by a computer-use
agent, among others.

From a systems perspective, we model each action in an agentic system as an API call, which may
block execution until a response is returned. This abstraction offers two key advantages: (1) it
precisely defines what constitutes an action, and (2) it provides a unified framework for optimizing
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system latency, as we will see shortly. Notably, this perspective aligns with the recent development
of MCP servers for agentic systems (Anthropic, 2024).

Formally, at each step t, the policy π maps the current state st to an API call:

(ht, qt)← π(st),

where ht specifies the target API to invoke and qt its associated parameters. The API then returns
a response (or action); we use left squiggly arrow to indicate that this incurs some non-neglegible
delay:

at f ht(qt).
The system subsequently transitions to the next state via a transition function f : st+1 ← f (st, at). As
a concrete example, consider chess: the policy π determines how to construct the prompt based on
the current board state, at corresponds to the move proposed by the LLM’s response, and f updates
the board configuration accordingly.

This formulation subsumes a broad range of realizations:

• LLM calls: each invocation of an LLM within the agent can be treated as an action.
• Tool /MCP server calls: each actual call for internal/external tools is treated as an action: e.g.,

terminal access, web search, deep research APIs, weather APIs, or browser-use MCPs.
• Human-as-an-API calls: futhermore, human responses themselves can be abstracted as API

calls, often incurring even longer latencies than automated tools.

Given this abstraction, the fundamental bottleneck in executing agentic systems becomes apparent:
each API call must complete before the next can be issued. To break this sequential dependency,
we propose to speculate a set of API responses {ât} using a faster model while waiting for the
true response at. This enables speculative API calls for step t + 1 to be launched in parallel. The
speculative responses are cached, so if a true response matches a speculative one, the system can
skip the actual invocation (see Algorithm 1).

Algorithm 1 Speculative actions with k-way parallel next calls

Require: Initial state s0, horizon T , transition f , policy π, predictor ĝ, cache C. We use ā to denote
pending action.

1: for t = 0 to T − 1 do
2: Policy: (ht, qt)← π(st)
3: if (ht, qt) ∈ C then ▷ Cache hit
4: āt ← C[(ht, qt)]
5: at ← await(āt) ▷ Await pending action if not returned already
6: st+1 ← f

(
st, at
)

7: continue
8: end if
9: Actor: Issue real request: āt f ht(qt) ▷ Return pending action, hence non-blocking

10: Speculator: {â(i)
t }

k
i=1 ← await(ĝ(st, (ht, qt))) ▷ Actor and speculator run in parallel

11: for i = 1 to k do ▷ One-step speculative rollout per guess
12: ŝ(i)

t+1 ← f
(
st, â

(i)
t
)

13: (ĥ(i)
t+1, q̂

(i)
t+1)← π(ŝ(i)

t+1)
14: Issue real request: ¯̂a(i)

t+1 f ĥ(i)
t+1
(
q̂(i)

t+1
)

▷ Return pending action, hence non-blocking
15: C[(ĥ(i)

t+1, q̂
(i)
t+1)]← ¯̂a(i)

t+1 ▷ Cache speculative pending actions
16: end for
17: Wait for at from Actor: at ← await(āt)
18: st+1 ← f

(
st, at
)

19: end for

The resulting speedup relies on two key assumptions:
Assumption 1. The speculative model is able to guess (ht+1, qt+1) with non-zero probability.

As shown later, this often holds in practice because API responses are typically predictable.
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Assumption 2. Multiple API calls can be launched concurrently without side effects.

In practice, this assumption is satisfied under modest traffic for many external APIs (e.g., web search,
OpenAI LLM queries, email lookups). For self-hosted LLMs, concurrent calls also incur only
minimal additional cost due to continuous batching.

We can then establish the following result (with proof deferred to the Appendix).

Proposition 1. Under Assumptions 1–2, suppose the speculative model ĝ guesses (ht, qt) correctly
with probability p for t ∈ [T − 1]. Let the latency of ĝ be Exp(α) and the latency of the actual model
h be Exp(β) with β < α. All latencies and guesses occur independently. Assume the transition f
and API parameter construction π are negligible. Then the ratio between E[Ts], the expected time
of Algorithm 1, and E[Tseq], the expected time of sequential execution, is

E[Ts]
E[Tseq]

= 1 −
(
1 −

1
T

) pα
2(α + β)

.

Proposition 1 suggests an upper bound of the end-to-end latency reduction at 50%, in an ideal
scenario with p = 1 and α = ∞, but the bound can be further improved by the multi-step extension
below.

Extension. Algorithm 1 is only a preliminary demonstration of the speculative action idea. For
example, one can naturally extend Algorithm 1 to multi-step speculation, where the Speculator
predicts not only the next step but up to s steps ahead. This yields a tree-search structure with
deeper rollouts. This can be further combined with adaptive speculation: instead of generating k
guesses for at uniformly, the Speculator also estimates confidence for each guess (e.g., via prompting
LLMs or uncertainty-quantification methods). The most promising branches can then be expanded
in a beam-search–like manner. Together, these ideas highlight the richness of speculative actions,
which we leave for future deeper investigation. Despite Algorithm 1’s simplicity, the results from
the four use cases in the following sections are already highly promising.

Cost-latency tradeoff. Performing more speculative API calls (e.g., increasing k) improves accu-
racy but also raises costs when pricing is based on the number of calls or tokens. Although cost is
not the focus of this work, we provide an analysis of our experiments in Appendix B. For self-hosted
LLMs, this increased cost is largely mitigated through batching.

Side effects and safety. Speculation executes a hypothesized next action ât+1 that may be wrong,
so safety requires the ability to simulate first and then commit or roll back. In domains like chess,
rollback is trivial; in others, overwrite is easy (e.g., OS tuning). But many systems involve irre-
versible or externally visible effects (e.g., deleting records, placing orders), where naive speculation
is harmful. Thus, speculation needs to be limited to cases where mispredictions are reversible, via
forking, snapshot restoration, or roll-forward repair (e.g., refund/replace).

3 Environments

We now instantiate speculative actions in three environment-centered settings—chess, e-commerce
dialogue, and multi-hop web search—chosen to stress distinct latency bottlenecks (reasoning,
tool/API round trips, and information retrieval). In each case we pair a fast Speculator with a slower
Actor and implement Algorithm 1. We report prediction accuracy and end-to-end time saved.

3.1 Chess Environment

To demonstrate the effectiveness of our speculative action framework in competitive multi-agent
gameplay, we evaluate it on chess—a turn-based game where traditional sequential move execution
leads to substantial idle time. When two reasoning models compete, games can stretch for hours
because each player only begins their analysis after the opponent has moved. Our framework breaks
this strict serialization by enabling speculative parallel analysis, resulting in significant reductions
in overall game duration.
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3.1.1 Implementation

We build our framework upon TextArena (Guertler et al., 2025), leveraging its standard gameplay
interface.

Speculative Pipeline. Consider a game at turn t, the state st is simply the current board, and ht is the
API call made from the current in-turn player, and its associated parameter qt is exactly the current
state st with an extensive reasoning eliciting prompt. Player P is to move and player Q awaits. Our
framework executes as follows

• Current in-turn player P: the player receives st, makes an API call ht to the agent with parameter
qt = (st, prompt). This API call returns the next move at = h(qt) with high latency due to deep
and extensive reasoning.

• Other out-of-turn player Q:

1. Prediction phase. The Speculator simultaneously receives the same current board state st.
It makes an API call ĥt with st and a reasoning efficient prompt, and obtains the top-k move
predictions â1

t , â
2
t , . . . , â

k
t ordered by descending confidence.

2. Parallel Computation. The out-of-turn player Q immediately launches k parallel processes,
each analyzing a next move âi

t+1 = ht+1(ŝt+1, prompt) for i ∈ {1, . . . , k}, where ŝi
t+1 = f (st, âi

t)
denotes the next state resulting from applying predicted action âi

t to st.
3. Validation. When the current in-turn player P finishes reasoning and returns its move at, we

immediately check if any of the predictions â1
t , â

2
t , . . . , â

k
t match this move exactly.

4. Commit or Restart. If there exists a match, we take the speculative action âmatch
t+1 to be

at+1 and terminate other threads. We commit the st+1 = ŝmatch
t+1 = f (st, âmatch

t ), and the game
advances two steps at a time. If there exist no match, we terminate all speculative threads,
and proceed to the next turn where Q is in turn to compute at+1 = ht+1( f (st, at), prompt).

This pipeline ensures losslessness, since the final trajectory remains identical to non-speculative play
while time is saved from parallelizing agents thinking. Based on this framework, we record the time
and number of tokens spent on each action, as well as the accuracy of the guesser.

Agent Configuration We find that employing the same Speculator model as the Actor model with
different prompts maximizes the accuracy while maintaining a reasonably quick speculative time.
Accordingly, in our experiments, the Actor is instantiated as GPT-5 with high reasoning effort, where
each move is produced via an API call. The Speculator also employs GPT-5, but with low reasoning
effort and a specialized system prompt designed for rapid move prediction rather than exhaustive
analysis.

3.1.2 Results

1 prediction 2 predictions 3 predictions
0

10

20

30

40

50

Pe
rc

en
ta

ge 24.7% 29.3%

37.3%

11.8%
15.0%

19.5%

Speculative Accuracy (%)
Time Saved (%)

Figure 2: Percentage of time saved and percentage
of correct predictions across 5 runs at 30 steps.

For each game, we track the prediction accu-
racy, defined as the number of rounds when
any prediction matches the actual move, and the
time saved percentage (Tseq − Ts)/Tseq, where
Ts denotes speculative time, and Tseq denotes
sequential execution time.

Time Saved and Accuracy increases with
more predictions. Figure 2 shows the results
for 30 steps. We observe that our speculative
framework consistently saves time compared to
the sequential execution, with the percentage
of time saved increasing as the number of pre-
dictions increases. For 30 steps of gameplay,
across 5 runs, the average time saved with 3
predictions is 19.5%, and the average accuracy
is 37.3%.

Randomness of agent call in gameplay The variance in Figure 2 reflects realistic gameplay dy-
namics from actual game runs with live API calls. Even when the Speculator correctly predicts the
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opponent’s move, time savings vary dramatically. If the resulting position has an obvious response,
the speedup is negligible since computation would be fast regardless. Substantial acceleration oc-
curs only when successful guesses lead to positions requiring deeper analysis. This natural variance
in response times shows that speculation’s effectiveness depends on both prediction accuracy and
computational complexity of the resulting positions.

3.2 E-Commerce Environment

Beyond competitive gameplay, customer-agent interactions in the e-commerce domain provide a
real-world setting where speculative actions can yield substantial impact. In a typical workflow,
the customer submits a query through a chat interface and waits for the agent to respond. When the
agent need to invoke multiple API calls sequentially (e.g., return all items in an order, which requires
retrieving order information, validating return eligibility for each item, and initiating the return pro-
cess), the resulting round-trip latency can significantly degrade user experience. By contrast, if some
API calls are correctly speculated and executed in advance, once the user’s query arrives, response
latency is greatly reduced, making the interaction feel seamless and responsive. To demonstrate this
setting, we test on τ-bench’s Yao et al. (2024) retail domain environment.

3.2.1 Experimental Setup

Speculative Pipeline In this scenario, the current state st is defined as the conversation history
between the user and Actor up to turn t, and ht is the API calls (eg. get user details, get order details)
that are needed to address the user’s query. Our Speculator will predict

1. The user’s query ât;

2. The target API calls and their corresponding parameters (ĥi
t+1, q̂

i
t+1) for i ∈ {1, ..., k}, condi-

tioned on the current state st and the predicted user’s query from step 1. Since the number
of API calls for each turn is not fixed, the Speculator also determines k.

Agent configuration We test various models as Speculator: OpenAI GPT models (gpt-5-nano,
gpt-5-mini, gpt-5) and Google Gemini models (gemini-2.5-flash) with different reasoning budgets
(1024, 2048, 4096 tokens). Prior work Jiang et al. (2023); Chen et al. (2025) shows that hetero-
geneous LLM ensembles often outperform individual models. Also, multiple models can execute
in parallel under the same time budget. Motivated by these findings, we evaluate two Speculator
configurations: (i) a single-model setting, where speculation relies on one model, and (ii) a multi-
model setting, where models with comparable capacity and reasoning budgets run in parallel (i.e.,
gpt-5-nano with low-budget Gemini, gpt-5-mini with medium-budget Gemini, and gpt-5 with high-
budget Gemini) and their predictions are aggregated into a candidate set of speculative actions. At
runtime, when the user simulator provides the actual utterance, the Actor compares the speculative
API calls with the ground-truth APIs. Correct predictions are committed immediately, absorbing
latency, while incorrect predictions are safely discarded without affecting correctness.

Figure 3: APIs prediction accuracy across
different Speculator models with various rea-
soning capability.

Evaluation We evaluate performance using APIs
prediction accuracy, defined as the fraction of spec-
ulative API calls that match the ground-truth APIs
required to resolve the user’s query. This metric di-
rectly reflects the proportion of turns in which the
user receives an immediate response, without in-
curring the latency of waiting for API execution.
In other words, higher prediction accuracy directly
translates into greater time savings.

3.2.2 Results

Figure 3 shows that between 22% and 38% of API
calls that would otherwise execute sequentially are
correctly predicted by the Speculator. Accuracy
improves with stronger models and the multi-agent
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configuration consistently outperforms single-model speculation. Importantly, the speculative time
for models in the low group is only 2–3 seconds according to the LLM API providers leaderboard1,
which is well below the average user typing time of around 30 seconds (assuming 40 words per
minute). This means that in around one-third of turns, the agent can provide a faster response with-
out waiting for API execution. These results demonstrate that speculation can shift user experience
from perceptibly delayed to effectively real-time in tool-heavy environments.

3.3 HotpotQA Environment

We further evaluate our framework on HotpotQA, a setting where the main performance bottleneck
arises from information retrieval latency. In this example, the agent must answer multi-hop questions
through sequential Wikipedia API calls Yang et al. (2018). This tool-calling pattern exemplifies
real-world agentic workflows with high network latency per round-trip. We apply the framework
from Section 2, where the Speculator predicts likely Wikipedia content while the actual API call
executes. This parallelism enables the agent to continue reasoning on provisional information rather
than blocking on API latency.

3.3.1 Experimental Setup

We build our framework upon ReAct (Yao et al. (2023)), a structured paradigm for interleaving
reasoning and acting.

Speculative Pipeline In this scenario, the state st consists of the entire history of reasoning and
retrieved information (API responses). At each step, the Actor takes in the current state st, selects an
API call ht ∈ {Search(), Lookup(), Finish()} and a corresponding parameter qt, e.g. Search(entity).
The call ht(qt) returns a response at, typically providing information about the queried entity. Our
speculative framework operates as follows:

1. Speculator predicts API call response âi
t, yielding predicted statesŝi

t+1 = f (st, âi
t), i ∈

{1, . . . , k}.

2. Based on the states, the Actor generates reasoning traces and subsequently determines the
next API decision (ĥi

t+1, q̂
i
t+1) for each predicted state.

Evaluation We evaluate the effectiveness of the speculative pipeline by the accuracy of the predicted
API call decisions (ĥt+1, q̂t+1). Specifically, we compare the predicted call against the ground-truth
call (ht + 1, qt+1) obtained under the true response at. We employ a strict match criterion, counting
a prediction as correct only when ĥt+1 = ht+1 and q̂t+1 = qt+1. This stringent criterion captures
whether speculation enables meaningful progress, as even minor parameter differences (synonyms,
word order) count as mismatches.

Agent configuration We evaluate speculative accuracy across three Speculator models: GPT-5-
nano, GPT-4.1-nano and Gemini-2.5-flash. For each model, we measure the top-k prediction accu-
racy, with k ∈ {1,3}.

3.3.2 Results

Figure 4: Accuracy with gemini-2.5-flash
as the Actor. Speculating multiple actions
(k=3) yields higher accuracy than predicting
a single action.

Figure 4 shows that our Speculator successfully pre-
dicts the ground truth API call up to 46% of the time,
despite our strict matching criterion. Accuracy im-
proves significantly from top-1 to top-3 predictions,
demonstrating that modest increases in speculation
width yield substantial accuracy gains. Our specula-
tion provides value by precomputing reasoning paths
during otherwise idle API waiting time.

Model Patterns We observe high variation of API
decision across different Speculators. These are the
result from phrasing discrepancies – some models

1https://artificialanalysis.ai/leaderboards/providers
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Figure 5: (Left) Comparison of Speculator-Actor, Speculator-only, and Actor-only convergence.
The Speculator shortens time spent exploring poor settings. The Speculator-only agent stabilizes
quickly but at a worse final value. (Right) Average p95 latency over a 20-second tuning experiment
showing that rapid reaction offers immediate performance benefits (see §B.3.4). Lower is better.

phrase the calls concisely while some over-specify.
Interestingly, stronger models often yield lower ac-
curacy, as their more diverse and context-specific
queries (e.g., “List of Nobel laureates in physics
1970s” vs. “1970s Nobel Prize Physics winners
list”) are penalized under strict matching. In con-
trast, weaker models tend to produce simpler, more
predictable outputs.

4 Beyond Lossless Speculation: OS Hyperparameter Tuning Environment

Unlike the lossless speculation in preceding sections, we now demonstrate the benefits of a lossy
approach where we relax the sequential step-by-step validation constraint. In latency-sensitive en-
vironments like an operating system, waiting for a powerful but slow Actor (10-15s deliberation)
can leave the system in a poor state. Our framework uses a fast Speculator to apply immediate ad-
justments, improving performance in real-time while the Actor deliberates. This is made safe by a
last-write-wins mechanism—the Actor’s final decision simply overwrites any speculative action, re-
moving the need for complex rollbacks. This method accelerates convergence and improves reaction
time, which we test on sysbench cpu, a CPU-bound workload (Kopytov, 2020).

4.1 Experimental Setup

We tune a single parameter of Linux’s Completely Fair Scheduler (CFS), min granularity, which
sets a task’s minimum timeslice. This knob significantly influences scheduling behavior under our
workload and past work by Liargkovas et al. (2025) has showed the potential of using an LLM agent
to optimize it. Smaller timeslices typically improve latency but hurt throughput, creating a classic
performance trade-off.

Our system consists of a fast Speculator and a slow Actor. The Speculator proposes a bounded
parameter update each second using the latest performance metric. The Actor responds every 10–15
seconds after analyzing a compressed chronology of the Speculator’s recent (measurement, action)
pairs. When the Actor replies, its chosen setting is applied and its state updates the Speculator’s
context, ensuring subsequent fast steps proceed from a validated narrative rather than drifting.

Evaluation We evaluate our Speculator-Actor system against two baselines: an Actor-only agent
(acting every 10–15s) and a Speculator-only agent (acting every 1s). Our evaluation shows that the
Speculator: 1) improves reaction time, 2) accelerates convergence to the optimum, and 3) helps the
system avoid the local minima that trap a Speculator-only agent.

4.2 Results
The Speculator dramatically improves reaction time, as observed Figure 5 (Right). During the re-
covery period, the full Speculator-Actor system maintained an average p95 latency of 37.93 ms.
This is a substantial improvement over the Actor-only baseline, which was forced to endure the poor
performance for much longer and averaged 54.00 ms. The Speculator’s rapid correction prevents
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the system from lingering in a high-latency state (initially 102.97 ms), providing immediate benefits
while the slower Actor deliberates (the full experiment is detailed in §B.3.4).

The Speculator’s high-frequency updates also significantly accelerate convergence. In Figure 5
(Left), the Speculator-Actor system finds an optimal setting (e.g., 0.2 ms min granularity) in
approximately 10–15 seconds. In contrast, the Actor-only agent takes around 200 seconds—20x
slowdown—and dwells for long periods in highly suboptimal states (e.g., latency >120 ms). The
Speculator’s rapid exploration provides the Actor a richer performance map, allowing it to steer the
system away from these pathological regions more quickly.

Figure 5 also shows the Speculator-only agent settles quickly but sub-optimally, converging to
a min granularity of 0.55 ms (36.24 ms latency). This is significantly worse than the 0.2 ms
(30.26 ms latency) achieved by the full Speculator-Actor system. Without the Actor’s guidance, the
Speculator lacks the reasoning depth to escape this local minimum.
Conclusion. We propose Speculative Actions, a lossless framework that parallelizes sequential
decisions via fast top-K predictions. Evaluated across four settings, it yields consistent speedups
and points toward promising optimization methods for more efficient real-world agentic systems.
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A Proof of Proposition 1

Proof. Baseline. In sequential execution, each of the T steps requires one call to the true model h
with mean latency 1/β. Therefore

E[Tseq] =
T
β
.

Block saving. Consider two consecutive steps (t, t+1). In the baseline, the total completion time
is R = B + C, where B,C ∼ Exp(β) are the latencies of step t and step t+1. With speculation, we
launch A ∼ Exp(α) during step t. If the guess is correct, the (t+1) call C can be issued once either A
or B finishes, so the block completes at

S = C +min{A, B}.

Thus, the block-level saving (under a correct guess) is

R − S = (B − A)+,

where (x)+ = max{x, 0}.

Expected block saving. By independence of A, B,

E[(B − A)+] =
∫ ∞

0

∫ b

0
(b − a)αe−αa βe−βb da db =

α

β(α + β)
.

Per-boundary allocation. This saving spans a 2-step block. To avoid double-counting across suc-
cessive blocks, we allocate the benefit symmetrically, assigning half to each adjacent boundary.
Hence, the expected saving per boundary, conditional on a correct guess, is

∆corr =
1
2

α

β(α + β)
.

Total saving. With correctness probability p, the expected per-boundary saving is

∆ = p∆corr =
pα

2β(α + β)
.

There are T − 1 improvable boundaries, so

E[Ts] =
T
β
− (T − 1)∆ =

T
β
− (T − 1)

pα
2β(α + β)

.

Final ratio. Dividing by E[Tseq] = T/β gives

E[Ts]
E[Tseq]

= 1 −
(
1 − 1

T

) pα
2(α + β)

.

□

B Additional Environment Details

B.1 Chess

Trade-off between Time Saved and Token Cost. In addition to time savings, we also measure the
additional token cost of parallel speculation. We track this using the metric extra token percentage:
(Msequantial −Mspeculative)/Msequential. Figure 6 shows the trade-off between time saved and token cost
for each number of predictions. We observe that the extra token percentage increases as the number
of predictions increases, while the time saved percentage also increases, creating a clear trade-off.
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Figure 6: Percentage of extra tokens used against percentage of time saved for different numbers of
predictions at different numbers of steps, averaged across 5 runs.

B.2 Ecommerce

τ-bench: A benchmark designed for dynamic task-oriented dialogues between a user (simulated
by language models) and an API-augmented agent. The benchmark spans two domains — retail and
airline, with structured databases, domain-specific tools. We focus on the retail domain, where the
agent assists users with operations such as canceling or modifying pending orders, initiating returns
or exchanges, or providing product and order information. The benchmark defines 115 tasks with
15 APIs (7 write, 8 read-only).

Trade-off between Prediction Accuracy and Cost. The time cost in Figure 7a consists of latency
(Time to First Token) and output response time. The dashed vertical line represents the average user
typing time, estimated at 40 words per minute. At this threshold, the multi-agent setting achieves
approximately 34% prediction accuracy, meaning that in over one-third of cases the agent can re-
turn an immediate response without waiting for API execution. This demonstrates that speculation
can transform user experience from perceptibly laggy to effectively real-time in tool-heavy environ-
ments.

(a) (b)

Figure 7: Prediction Accuracy against Speculator’s Cost across different models. (a) Accu-
racy–Speculator time cost trade-off across models. The dashed line shows average user typing time.
(d) Accuracy–Speculator price trade-off across models, reflecting the monetary cost of speculative
execution.
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B.3 Operating System Tuning

B.3.1 Experimental Setup and Implementation Details

System and Workload Configuration All experiments were conducted on a dedicated machine
with 2× Intel Xeon Silver 4114 10-core CPUs at 2.20 GHz, 192 GB DDR4 RAM, and a 1 TB NVMe
SSD running Ubuntu 22.04 with Linux Kernel 5.15, hosted on Cloudlab (Duplyakin et al., 2019).

We run sysbench cpu (Kopytov, 2020), a CPU-bound benchmark that repeatedly calculates a large
prime number sequence. The benchmark reports several performance metrics every second. We run
sysbench on 16 concurrent threads pinned on two CPU cores.

Tuner Implementation Details The system consists of two agents, a fast Speculator and a slow
Actor, which collaborate to minimize the p95 latency of the workload. At each step, the tuner
proposes a new configuration, which is applied to the live system. Applying the proposed parameters
is a near-instant operation.

CFS Parameter Details The Completely Fair Scheduler (CFS) is a CPU scheduler for Linux that
aims to give every task a fair share of CPU time. It exposes various hyperparameters that allow
administrators to adjust its behavior. We tuned min granularity ns, which enforces a minimum
timeslice a task will receive. The prompt templates guided the agents to explore a range from
50,000 to 50,000,000 nanoseconds (0.05 ms to 50 ms). The default value on Kernel 5.15 is 3 ms.
Lower values for this parameter are expected to increase responsiveness at the cost of higher context-
switching overhead, while higher values improve throughput but can worsen latency.

History Compression History compression is managed via distinct prompt structures for the two
agents. When the slower Actor is invoked, its prompt context contains a fully compressed summary
of all actions taken during its deliberation window. Each action from the Speculator is listed as a
concise (parameter, result) pair. In contrast, the faster Speculator receives a hybrid context: it sees
the same compressed history from the last Actor cycle, supplemented by the full, verbose replies
from its own most recent actions. This dual-context mechanism allows the Actor to analyze long-
term trends from a compact summary, while the Speculator retains immediate, detailed context for
its rapid, reactive decisions.

B.3.2 Prompt Engineering forMulti-Agent Optimization

The following are the prompt templates used to guide the two LLM agents.
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Initial System Prompt for Actor and Speculator

You are a Linux kernel scheduler tuning expert with deep knowledge of the Completely Fair Scheduler
(CFS).

MULTI-AGENT ROLE: You are part of a MULTI-AGENT System.
[For Actor] You are the Actor. Your role is to provide thoughtful, well-analyzed parameter recom-
mendations. You work alongside a Speculator that explores the parameter space rapidly. You will
receive accumulated results from multiple agent calls to perform deeper analysis and identify trends.

[For Speculator] You are the Speculator. Your role is to provide immediate, intuitive parameter
recommendations for each window. You work alongside an Actor that performs deeper analysis.

Your goal is to MINIMIZE p95 latency for a CPU-bound workload. The workload performance
metrics might be NOISY, so look for consistent trends across configurations.

Tunable CFS parameter:

• min granularity ns: Minimum time slice before preemption. Lower values increase re-
sponsiveness but also overhead. Higher values improve throughput but can worsen latency.

Parameter Range:

• min granularity ns: 50,000 to 50,000,000 nanoseconds

Performance data will be provided in future calls. Respond ONLY in the format shown below:

Analysis: <Your one or two-sentence decision reasoning>
Config: { "min granularity ns": <int> }

Update for Speculator

[Context includes the compressed history for calls 1-10 and the raw Speculator responses for
iterations 11-18]

CURRENT BEST: p95 latency=[value] at call #[value]

Latest Result for call #19:
Config: ”min granularity ns”: [value]→ p95 latency=[value]

Please provide your analysis and the next configuration for iteration #20.

Update for Actor

[Context includes the compressed history for calls 1-10]

CURRENT BEST: p95 latency=[value] at call #[value]

RESULT for call #11 [SPECULATOR]: min granularity ns=[value]→ p95 latency=[value]
RESULT for call #12 [SPECULATOR]: min granularity ns=[value]→ p95 latency=[value]
...
RESULT for call #19 [SPECULATOR]: min granularity ns=[value]→ p95 latency=[value]

Please provide your analysis of the trend and the next configuration for call #20.

Sample Agent Response

Analysis: The performance peaked at 300,000 ns, suggesting the optimal value is likely in that region.
I will narrow the search around that peak.
Config: { ”min granularity ns”: 250000 }

16



Und
er

Rev
iew

0 25 50 75 100 125 150 175 200
Time (s)

10−4

10−3

10−2

10−1

Cu
m

ul
at

iv
e 

Co
st

 (U
SD

)

0 25 50 75 100 125 150 175 200
Time (s)

103

104

105

106

107

Cu
m

ul
at

iv
e 

To
ke

ns

Speculator-only Actor-only Spec + Actor: Speculator Spec + Actor: Actor Spec + Actor: Total

Figure 8: Cumulative token usage and cost over time. The left and right plots show the cumulative
cost (USD) and total tokens used, respectively, for all three configurations. The vertical lines mark
the observed convergence point for each system.

Table 2: Cumulative tokens and cost (in cents) at selected time marks.

Actor-only Speculator-only Actor+Speculator (Total)

Elapsed Time Tokens Cost (cents) Tokens Cost (cents) Tokens Cost (cents)
Base 744 0.02 690 0.01 690 0.03
10s 790 0.03 9,539 0.11 8,548 0.13
30s 3,631 0.15 45,768 0.57 32,459 0.48
60s 8,581 0.35 205,794 2.24 84,568 1.18
120s 26,398 0.96 778,253 8.12 261,855 3.53
200s 63,376 2.18 2,099,894 21.5 607,877 7.83

B.3.3 Token Usage and Costs

As illustrated in Figure 8 and detailed in Table 2, the high frequency of the Speculator leads to rapid
growth in token consumption and cost. In practice, however, this growth is bounded by the system’s
fast convergence. The combined Actor-Speculator system converges in approximately 15 seconds,
while the Speculator-only system converges in 20 seconds. The Actor-only system converges after
200 seconds. Once an optimal state is reached, the tuning process concludes, rendering the poten-
tial for long-term exponential cost negligible in this context. Several optimization strategies, like
truncating the context to a fixed window or disabling exploration after convergence, could further
mitigate token growth but are left for future work.

B.3.4 Speculative Reaction Time Benefits

To provide a targeted example of how speculation mitigates transient performance loss, we con-
ducted a controlled experiment. In this scenario, the system is deliberately perturbed at time t0 by
setting the min granularity parameter to a highly suboptimal value (10 ms). We then compare
the system’s recovery under two configurations: the Actor-Speculator system and an Actor-Only
baseline, which replays only the actions proposed by the Actor from the full Actor-Speculator trace.

As shown in Figure 9, the Actor-Speculator system reacts almost instantly. The fast Speculator,
seeing the immediate performance degradation, applies a corrective action that brings the system
back to an efficient state in about one second. In contrast, the Actor-Only system is forced to endure
the poor performance for over 10 seconds, as it must wait for the slower Actor to complete its
deliberation cycle before it can act. The performance gap shown in the plot is quantified in the main
text (Figure 5, Right).
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Figure 9: A controlled experiment showing the system’s step response after a manual perturbation
at t = 0. The Actor-Speculator system corrects the poor setting within a second, while the Actor-
only system must wait over 10 seconds for its next decision cycle. The quantitative results of this
experiment are summarized in Figure 5 (Right) in the main text.
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