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Abstract
Machine learning can turbocharge OS optimization—if one

is willing to reinvent the whole stack. Recent work pushes

exotic instrumentation or new OS designs that break real-

world constraints, demanding app metrics nobody can (or

wants to) provide. The alternative—naively optimizing for

simple system proxies like IPC—is just as flawed, leading to

misleading results that fail to generalize across real-world

workloads. Our framework sidesteps this dilemma by learn-

ing to optimize without direct visibility. Instead of building

brittle models to predict absolute performance, we reframe

the problem to learn the relative ranking of system configu-

rations, using a diversified performance signature built from

the system counters the OS already has. The outcome is a

scalable, robust, and ML-driven performance boost for real

applications—delivered without demanding radical shifts in

the OS landscape.

CCS Concepts: • Software and its engineering→ Oper-
ating systems; • Computing methodologies→Machine
learning.

Keywords: Operating systems, machine learning, OS auto-

tuning, preference learning
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1 Introduction
Machine learning (ML) offers a significant opportunity to

optimize the OS, improving performance, efficiency, and
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adaptability [32]. Applied correctly, ML can enable real-time

tuning of critical OS components such as CPU scheduling [9],

memory management [26, 28, 35], and I/O prioritization [19].

However, practical deployment is challenging. Current ML-

based OS optimizers typically depend on application-level

metrics (e.g., request latency) [6, 7, 11, 13, 20, 22, 24, 25, 31,

37, 43], creating a gap between what the OS can see and

what the optimizer needs. The OS has access to low-level

system counters but lacks visibility into high-level applica-

tion performance.
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Figure 1. Tail latency for TPC-C (top) and sysbench OLTP-

RW (bottom) when using Bayesian Optimization to tune

scheduler parameters based on different metrics.

Intrusive solutions, such as modifying applications to ex-

port metrics or migrating to entirely new, ML-centric operat-

ing systems [42], are non-starters for most production envi-

ronments. The only universally viable signals are the system-

level metrics the OS already collects. However, naively using

simple proxies like Instructions per Cycle (IPC) to guide

optimization offers limited gains and can be misleading, as

shown in Figure 1 (top) vs (bottom). The best-performing

system proxy for one workload can be ineffective or even

counterproductive for another or when noise is introduced.

This shows that such simple approaches are brittle and fail

to generalize to the diverse and dynamic workloads found

in modern data centers.
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This paper argues for a pragmatic, non-intrusive frame-

work that bridges this semantic gap. We make three main

contributions. First, we empirically demonstrate the pitfalls

of relying on simple system metrics as performance proxies
and absolute performance prediction models, showing they

are brittle and fail to generalize. Second, we propose a robust

workaround: a framework that uses relative ranking models

and clustering to build specialized, noise-resistant models.

Finally, we chart a path toward truly adaptive systems by

proposing causal modeling as a mechanism to handle com-

plex environmental variation. Together, these techniques

provide a practical path toward a self-optimizing Linux for

real-world, unmodified applications.

Our proposed system requires zero modifications to both

the application and the OS: no app instrumentation or code

changes, and no kernel patches or new kernel subsystems.

Our deployment is a userspace agent that (i) samples exist-

ing kernel surfaces (perf_event_open, /proc, /sys) and (ii)
applies settings via standard knobs (sysfs, sysctl).

2 Constraints for Practical ML-based OS
Optimization

The lack of visibility between the OS and applications im-

poses a set of practical constraints on any realistic ML-based

optimizer.

The Black-Box Application: A core constraint is that the

OS must treat applications as black boxes, which restricts

gathering insights about their internal state. This opacity

stems from 1) software complexity, 2) a lack of standardized

performance interfaces, and 3) ubiquitous legacy applica-

tions without instrumentation [21, 31, 33]. Unlike specialized

domains like databases that have built-in metric reporting,

general-purpose OS components like the scheduler cannot

assume access to application-specific metrics (e.g., , request
latency).

Even when APIs exist [16, 22], using them requires signif-

icant engineering effort, introduces dependencies, and adds

overhead. This makes approaches that require application

changes or migrating to a new OS entirely [42] non-starters

for most production environments. The problem is amplified

further in virtualized data centers, as the host OS has no

insight into guest VMs, and breaching this isolation would

violate security and privacy guarantees. Therefore, solutions

that require modifying applications are often infeasible due

to legal, technical, and risk-management reasons.

Data Scarcity and Quality: The black-box nature of appli-

cations leads to scarce, context-specific training data. While

some ML domains benefit from large, standardized datasets,

performance data is closely tied to its originating environ-

ment. Consequently, any model trained to map system met-

rics to application performance is implicitly specialized to

the specific context in which the data was collected. This con-

text includes: a) The Application: A model trained on an

OLTP workload like TPCC has little relevance for an OLAP

workload like TPCH. b) The Workload: Performance char-

acteristics change dramatically with the request mix, load

intensity, or the presence of noisy antagonists. c) The Sys-
tem: The underlying hardware, kernel version, and software
dependencies all influence performance.

Even large, public workload traces [10, 18, 29, 34, 38, 39],

while valuable, lack direct application performance metrics

and contain only a limited set of system-level counters (of-

ten just resource utilization), making them unsuitable for

training fine-grained optimization models [4].

We therefore reach a generalization barrier. A provider

might train a model on a benchmark workload, but it will be

deployed on systems running different applications under

variable conditions. The model is therefore almost certain

to fail, not because the algorithm is flawed, but because the

rules it learned from one context do not apply to another.

This problem is the primary motivation for our case study

(§3), where we demonstrate it empirically.

3 Case Study: Challenges Exposed via CPU
Scheduler Tuning

The constraints outlined above manifest as concrete chal-

lenges for any non-intrusive optimizer. To illustrate this, we

demonstrate two resulting problems: 1) single metrics fail

to generalize across workloads, and 2) even complex models

built from these metrics are brittle to changing conditions.

Experimental Setup: We conducted a series of exper-

iments on a machine equipped with 2×Intel Xeon Silver

4114 10-core CPUs at 2.20 GHz, 192GB of RAM, and a 480

GB 6G SATA SSD, hosted on CloudLab [14]. We tuned the

Linux Completely Fair Scheduler (CFS) [36] for two distinct

workloads: TPC-C implemented on Benchbase [12], and the

sysbench OLTP-RW benchmark [23], both hosted on Post-

gresSQL 14.18 with 16 workers pinned to two CPU cores.

The system was kept under high load, ∼ 90% CPU utilization.

In each experiment, we used Bayesian Optimization (via

SMAC3 [27]) to tune CFS’s min_granularity_ns, which
controls the minimum time a task runs on a CPU before be-

ing preempted. Low values can improve responsiveness for

I/O-bound tasks at the cost of higher context-switching over-

head. High values reduce this overhead by allowing tasks

longer, uninterrupted run times, which benefits CPU-bound

computations. We implemented a tuner that collects applica-

tion and system-wide measurements every 10 seconds, runs

Bayesian Optimization, and applies the new proposed param-

eters based on the observed metrics. We ran the experiment

over 100 iterations. The goal for both experiments was to

minimize the application’s tail latency.

Challenge 1: Single Metrics Fail to Generalize: A com-

mon workaround for the lack of application metrics is to

optimize for a single, easy-to-measure system proxy like

Instructions Per Cycle (IPC). However, the utility of such a
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proxy is not universal. For TPC-C, IPC appears to be a rea-

sonable proxy as it has a significant Pearson correlation of

𝑟 = 0.61 with tail latency. As the top plot in Figure 1 shows,

using BO to maximize IPC yields a 17.3% improvement in p99

latency over the default scheduler configuration. However,

this relationship completely breaks down for sysbench—IPC

has a near-zero correlation with latency (𝑟 = 0.007) and

targeting it actually increases p95 latency by 18.6%.

More surprisingly, targeting a seemingly "bad" metric—

maximizing cache misses—yielded even better results. For

TPC-C, this improved median latency by 16.6%, while for

sysbench it produced the best configuration overall, reducing

latency by a massive 55.6% over the default. This counterintu-

itive outcome occurs because the optimizer discovers sched-

uler settings that reduce queueing delays by forcing frequent

context switches. While this behavior pollutes the cache (in-

creasing misses) and lowers CPU efficiency (reducing IPC),

it prevents any single thread from waiting for too long and

ensures all workers make progress, which is critical for min-

imizing tail latency in a contended system. This proves that

the relationship between system metrics and application per-

formance is complex and often non-linear, making the choice

of a single proxy or even a static combination of proxies not

just unreliable, but potentially counterproductive.

Challenge 2: ComplexModels Are Brittle: The failure of

single-metric proxies suggests that a more robust approach

is needed. The logical next step is to move beyond any single

counter and instead use a feature vector of system-level

metrics to capture a more complete performance signature.

One might argue that a complex model trained on such a

rich feature vector—using feature engineering or clustering

to identify informative signals [37]—would be more robust.

To test this, we built a gradient boosting regression model

to predict the absolute p99 latency for TPC-C using a wide

array of system-wide metrics. As shown in Table 1, when

trained and evaluated on a stable TPC-Cworkload, the model

was effective, achieving an 𝑅2
of 0.72. However, the model’s

performance proved brittle. Whenwe applied this exact same

trained model to a TPC-C workload co-located with a back-

ground "antagonist" process, the model failed completely,

yielding a negative 𝑅2
. This means its predictions were worse

than simply guessing the mean, as it had overfit to specific

relationships that did not hold under noisy conditions.

This failure occurs even though some individual metrics,

like IPC, maintain a superficially strong correlation with la-

tency in both environments (Table 1). A high correlation for

a single metric is not enough; the model’s failure stems from

its reliance on the entire set of relationships between features,

which are unstable. For instance, the model learned to heav-

ily weigh context switches, a metric whose relationship to

latency changed dramatically in the presence of noise. Even

complex predictive models are too fragile for real-world de-

ployment, where environmental conditions are never static.

4 A Framework for Non-Intrusive OS
Optimization

Our Goal: For real-world impact, ML-based OS improve-

ments must target widely-used systems like Linux, requir-

ing absolutely no application modifications and operating

under the constraints of visibility and data availability.

The challenges demonstrated in our case study necessitate

a new approach. Our proposed framework, detailed in this

section, provides one by sidestepping absolute performance

predictions and instead focusing on learning the more robust

signal of relative performance (see Figure 2).

Our framework has three stages: we (i) define a diversified

performance signature (§4.1), (ii) train archetype-specific

pairwise rankers offline (§4.2), and (iii) use gated selection

with a global ranker to drive a preferential online tuner (see

Algorithm 1).
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Model A > B

Model 
Selector

Model Training

Representative Workloads
(TPCC, TPCH, etc.)

Offline Training

Data Collection & Profiling

Online Optimization

Black Box 
Application

Online 
Tuner (BO)

• Cluster Metric Signatures
• Train Pairwise Rankers
   (per cluster + global)

• App. Performance Metrics
• System-Wide Metrics

System-Wide Monitor
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Signature

Select 
Ranker 

Apply 
Best 
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Kernel

Pairwise 
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Figure 2. A non-intrusive OS optimization framework. Of-
fline Training (left): Representative workloads are profiled
to train a suite of specialized pairwise ranking models, one

for each application archetype identified via clustering, and

a global model used when the online performance signature

does notmatch an existing archetype.OnlineOptimization
(right): On a production server, a system monitor observes

the black-box application’s metric signature to select the

appropriate pre-trained ranker, which is used as a pairwise

oracle for an online tuner (e.g., BO), guiding it toward the

optimal OS configuration using only system-level metrics.

4.1 Performance Signature and Archetype Selection

Signature: The framework builds a diversified performance

signature 𝑥 over 10 s intervals from Linux’s existing surfaces

(perf stat, /proc, /sys). Categories include CPU core (cy-

cles, instructions, IPC, stalls), scheduler (context switches,

runqueue length, migrations, load averages), memory/VM

(faults, reclaim, NUMA hit/miss, active/inactive), cache/LLC

3



Algorithm 1 Online tuner with archetype gating and

guardrails

Require: initial config 𝑐0, tuner state T , thresholds 𝜏, 𝛿
1: 𝑐 ← 𝑐0 ⊲ Initialize incumbent configuration

2: loop
3: 𝑥 ← GetCurrentSignature() ⊲ Sample OS state

4: 𝑘 ← NearestArchetype(𝑥)
5: if IsNovel(𝑥, 𝜏) then
6: R ← GLOBAL

7: else
8: R ← RANKER[𝑘]
9: end if
10: 𝑐′ ← Propose(T ,R, 𝑥) ⊲ Propose challenger

11: 𝑚 ← R .Score(𝑥, 𝑐′) − R .Score(𝑥, 𝑐)
12: if 𝑚 < 𝛿 or ProxyFlags(𝑥, 𝑐′) then
13: 𝑐𝑛𝑒𝑥𝑡 ← 𝑐 ⊲ Reject and keep incumbent

14: else
15: ApplyConfig(𝑐′)
16: ObservePreference(T ,winner = 𝑐′, loser = 𝑐)
17: 𝑐𝑛𝑒𝑥𝑡 ← 𝑐′ ⊲ Promote challenger

18: end if
19: 𝑐 ← 𝑐𝑛𝑒𝑥𝑡 ⊲ Update incumbent for next loop

20: Sleep(interval)

21: end loop

(references/misses), disk I/O (/proc/diskstats), network
(/proc/net/snmp), and CPU utilization.

Archetypes: In the offline phase, we collect signatures

from a comprehensive set of representative applications that

includes most of the application types we expect to see in the

cloud today. The signatures are then clustered (e.g., using 𝑘-

means on a PCA embedding) to define application archetypes.

A pairwise ranker is then trained for each archetype, plus

a lightweight global ranker on the union of all data. In the

online phase, the agent uses𝑘-NNwithMahalanobis distance

to select the best model; if the signature’s distance to the

nearest centroid exceeds a novelty threshold 𝜏 , it falls back

to the global ranker. The chosen ranker then acts as the

pairwise oracle for the online tuner.

4.2 Simplifying Prediction with Relative Ranking

The Path: The brittleness of both single-metric proxies

and complex predictive models motivates our core pro-

posal: we must reframe the problem from predicting ab-

solute performance to the more robust and generalizable

task of learning relative rankings.

The model’s inability to generalize is a critical barrier as

seen in (§3). Even with sophisticated feature engineering,

building a general-purpose model to predict absolute perfor-

mance across diverse workloads remains exceptionally diffi-

cult. Our framework’s core idea is to sidestep the intractable

problem of absolute performance prediction and instead fo-

cus on learning relative rankings, which is extensively stud-

ied in domains like search and recommendation [8]. Many

OS optimizations do not need precise absolute predictions;

it often suffices to know if one configuration is better than

another. This approach proved far more robust to the chal-

lenges of noise and environmental variation demonstrated

in our case study.

Table 1. Comparison of predictive approaches on Stable vs.

Noisy TPC-C.

Predictive Approach Stable Noisy

Single Metric Pearson r with p99 Latency
IPC 0.61 0.62

Context Switches -0.19 -0.61

Cache Misses 0.41 0.57

Absolute Prediction Model (Trained on Stable)
𝑅2

Score 0.72 <0

Pairwise Ranking Model (Trained on Stable)
Accuracy 81.7% 70.2%

AUC 0.90 0.79

From Prediction to Ranking: While our absolute predic-

tion model showed promise on a stable TPC-C workload, its

performance proved brittle when conditions changed. Table 1

contrasts the different predictive approaches. The complex

absolute prediction model achieves a strong 𝑅2
of 0.72 on

stable data, but its performance collapses to a negative 𝑅2

under noisy conditions, rendering it worse than useless.

In contrast, a pairwise classification model demonstrates

far greater robustness. Its accuracy only drops from 81.7% on

stable data to 70.2% under noise, and it continues to provide

a strong predictive signal where the absolute model failed.

The table also reveals why the absolute model is so brittle: its

predictions relied heavily on context switches (41.7% feature

importance), a metric whose relationship with latency is

unstable—its weak negative correlation (𝑟 = −0.19) on the

stable workload becomes a stronger (𝑟 = −0.61) under noise.
The pairwise model succeeds because it learns a diversi-

fied performance signature from many features, with its top

feature contributing less than 8%. By relying on a broader set

of signals rather than overfitting to precise, unstable relation-

ships, the diversified model is inherently more robust to the

kind of environmental variation that causes single-metric

proxies and monolithic prediction models to fail.

Who Manages the Data Collection? In practice, neither

end users nor individual developers can run the extensive

experiments required for our data-driven approach. Instead,

cloud providers and large-scale on-premise operators have

both the incentive and the authority to do so. From a business

standpoint, providers benefit from more efficient resource

4



utilization and improved service quality. They can systemat-

ically deploy representative benchmarks (e.g., DCPerf [30],
Fleetbench [2]) under different OS configurations, record-

ing both hardware counters and application performance to

build the rich datasets necessary for model training.

Who Builds the Models at Scale? The provider centrally

trains pairwise ranking models using ground-truth data from

representative benchmarks. These ranking models are trans-

ferable because they learn the generalizable, directional rela-

tionship between a configuration change and its performance

impact, unlike absolute models which overfit to the specific

performance values. The provider then distributes the mod-

els, sparing developers the complexity of this process.

Second, for the online optimizer itself (the BO agent), fed-

erated learning is a natural fit for continuous improvement.

Each server in the fleet can learn locally from its own tuning

experience, identifying which regions of the configuration

space are promising. Knowledge can then be aggregated into

a global model without sharing any raw, potentially sensi-

tive user data, allowing the entire fleet to benefit from the

collective experience. This can be done with privacy pre-

served through techniques like differential privacy [1, 15]

and metric encryption [41].

4.3 Tackling Environmental Variation with Causal
Models

The second major challenge—performance variability due to

noise, antagonists, and changing workload phases—is funda-

mentally harder to address. Correlation-based ML models,

including the ranking models discussed above, struggle with

this because they often learn spurious correlations that do

not hold when conditions change.

CausalModeling to EnhanceData Realism: We propose

exploring causal modeling as a promising, albeit challeng-

ing, research direction to build models that are robust to

environmental variation. Approaches like CausalSim [3] at-

tempt to learn cause-effect relationships between system

interventions (e.g., scheduling decisions) and performance

outcomes. By disentangling the true impact of a configura-

tion change from confounding environmental factors, causal

models have the potential to generalize far more effectively

than their correlation-based counterparts. A naive simulator

may confuse hardware changes with improved scheduling

policies, but by isolating causal factors, these models can

ensure that performance gains are attributed to the correct

policy. While developing a complete and efficient causal en-

gine for the OS is a very hard, open problem, it represents a

critical frontier for creating truly adaptive systems.

5 Open Challenges and The Path Forward
A non-intrusive, ML-driven OS tuner must be safe under

uncertainty, cheap to run, and easy to operate.We summarize

the main challenges and the most promising paths forward.

5.1 Operational challenges

Unseen workloads and representativeness: Archetype

rankers are only as good as the offline corpus. Our gating

and global ranker mitigates mismatch, but cannot eliminate

it. Building broad, periodically refreshed corpora is essential.

Detecting application class online: Signature-space gat-

ing must be accurate and low-overhead. Beyond 𝑘-NN, light-

weight density models and online drift detectors can improve

assignment and trigger re-gating when phases change.

Drift and non-stationarity: Workloads, interference, and

kernel versions evolve, while the hardware varies. The online

tuner should include conservative guardrails (incumbent

protection, margin 𝛿 , proxy sanity checks) and support safe

exploration under drift.

5.2 The Path Forward
The future involves three key research directions:

Building Pairwise-driven Online Tuners: The imme-

diate work is to build practical online agents that lever-

age our pre-trained pairwise models. This involves integrat-

ing the rankers with lightweight online tuning frameworks.

Promising directions include Preferential Bayesian Optimiza-

tion [17], which can model a latent performance landscape

from ‘A > B‘ comparisons, or simpler approaches based on

multi-armed bandits [5], and variants designed for pairwise

comparisons like Dueling Bandits [40].

Validating andGeneralizing RankingModels: The next

step is to systematically build and validate a "model zoo"

of pairwise rankers. This requires large-scale data collec-

tion campaigns—likely managed by cloud providers—to train

models that are robust across a wide variety of applications

(databases, web servers, HPC), hardware (different CPU gen-

erations, memory hierarchies), and software stacks (kernel

versions, libraries). The goal is to create a library of special-

ized models that an OS can select from at runtime based on

an application’s observed metric signature.

Moving from Correlation to Causality: While ranking

models are more robust to noise, they are still correlational.

The ultimate frontier is to build a causal inference engine for

the OS. Such an enginewould allow the system to understand

the true impact of its actions, distinguishing performance

changes caused by a tuning decision from those caused by ex-

ternal factors like workload shifts or noisy neighbors. This is

a very hard problem, but it represents a necessary transition

from reactive tuning to proactive, reason-based optimization.
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