An Expert in Residence:
LLM Agents for Always-On Operating System Tuning

Georgios Liargkovas! Vahab Jabrayilov! Hubertus Franke’ Kostis Kaffes!
!Columbia University ~ 2IBM Research

{g.liargkovas, vjabrayilov, kkaffes}@cs.columbia.edu' frankeh@us.ibm.com?

Abstract

Classical machine-learning auto-tuners for OS control struggle with semantic gaps,
brittle rewards, and unsafe exploration. We introduce an online, LLM-driven agent
that emulates expert reasoning for continuous OS optimization. When tuning
the Linux Completely Fair Scheduler’s hyperparameters, the agent outperforms
Bayesian optimization by 5% in single-parameter tuning, 7.1% in two-parameter co-
tuning, and a human expert by 2.98% overall, while converging faster and adapting
more quickly to workload changes. When application counters are unavailable,
system-level proxies (e.g., Instructions Per Cycle (IPC)) preserved tail latency in
our setup. Putting this together, we propose adopting the Model Context Protocol
(MCP) for tool/resource discovery and invocation and a logging channel; on top
of that, we propose adding transactional apply—commit-revert, host-mediated
approval gates, and policy controls in the OS-tuning server and host to ensure safe,
auditable operation. Our results and the proposed architecture point toward a new
generation of self-adapting, expert-level OS tuners.

1 Introduction

Modern operating systems expose hundreds of tunable run-time knobs, but manually optimizing
them for evolving workloads and hardware is intractable. We argue that the next leap in autonomous
systems management lies in emulating the expertise of a human engineer. An expert does not just
blindly turn knobs; they leverage deep contextual understanding and sophisticated reasoning to make
informed decisions. This paper introduces a new paradigm that embodies this principle: a fully online,
autonomous agent powered by a Large Language Model (LLM) for live operating system tuning.
This agent bridges the semantic gap that plagues traditional machine learning (ML) auto-tuners,
replacing slow, risky exploration and brittle reward functions with an agent that can reason about
system state, interpret high-level goals, and act decisively, much like a human expert.

We deploy the agent for live CPU scheduler tuning on Linux, showing it outperforms classical ML
tuners and a human expert while adapting to workload shifts. In the main text, we present only the
high-level insights; full setup and analyses appear in the appendix.

Related Work: Classical ML auto-tuners, whether based on Bayesian Optimization (BO) or
Reinforcement Learning (RL), have shown success in specific domains like database systems [6} [18],
application tuning [6, 10} |12} [17], system resource allocation [2f], and others. However, their lack of
contextual understanding makes them ill-suited for the dynamic and sensitive environment of a live
OS. More recent work has begun to integrate LLMs, but primarily in offline settings. Systems like
DB-BERT [16], GPTuner [8], and A-Tune [[7]] use LLMs to pre-process documentation or generate
static configurations before deployment. Similarly, AutoOS [3] uses an LLM to generate an optimized
kernel configuration, but this is a one-off, pre-deployment step. While visionary agentic frameworks

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Machine Learning for
Systems .

like AIOS [14] and Herding LLaMasS [9] have been proposed, they have not yet demonstrated a
practical system for specialized, continuous performance tuning on a live machine.

Position & Contributions: (1) We argue for an agentic OS tuner that uses tools to build its
own context and act online. (2) We propose a principled interaction model that uses MCP for
discoverability and communication, and layers server/host-side transactions, approval gates, and
policy to make actions governable and auditable. (3) We demonstrate a mini case study on Linux’s
Completely Fair Scheduler (CFS) showing faster, stabler convergence than BO/RL/human, including
when co-tuning antagonistically correlated knobs (parameters can override each other). While
our main results optimize application p99 latency, we show the agent also performs well under
system-level objectives (e.g., Instructions Per Cycle (IPC)) when app metrics are unavailable.

2 Mini Case Study: LLLM Tuning Loop vs Classical Tuners

We study online tuning of the Linux kernel’s CFS [[15]. The goal is to minimize application-level p99
tail latency under load by adjusting two related knobs: latency_ns (the target period for fairness)
and min_granularity_ns (the minimum timeslice a task may run). We evaluate two scenarios: (i) a
fixed-rate TPC-C workload with both single-parameter (1P) and dual-parameter (2P) tuning, and (ii)
a variable-rate TPC-C workload with two mid-run rate changes (1P) which includes a human expert.

We compare four online tuning strategies: (1) Bayesian Optimization (BO), (2) Reinforcement
Learning (Q-learning and DQN), (3) a human expert with kernel experience, and (4) a prompt-driven
LLM loop (Gemini 2.5 Flash). All tuners run for the same number of cycles (200 by default). Each
cycle consists of a 10-second workload run, metric collection, and a new configuration proposal.
For (ii), the LLM and the human receive the same interface and auxiliary system metrics (e.g., [PC
from perf stat and throughput from the application), while the classical baselines only consume the
scalar reward exposed to them (p99 latency; for "IPC" the reward is IPC; details in Appendix [A).

10
i s]

1 1

!

!

. |

!

0.1 i
0 25 50 75 100 125 150 175 200

O Gefaut 1 3 i 2 IpC 1 2 12 Tuning Cycle
FIXED LLM BAYESIAN QLEARNING DQN —— LM BAYESIAN —— HUMAN EXPERT

(=2} ~ ©
(=) o o

min granularity (ms)

°d
(=)

P 99 Latency (ms)

Figure 1: Left: Violin plots of application p99 latency (lower is better) under single- and dual-
parameter tuning of the antagonistic pair (latency_ns, min_granularity_ns) in the fixed-rate
experiment; red line denotes the mean. Labels "1/2" denote one- vs two-parameter tuning; FIXED is
the default OS configuration. Co-tuning degrades classical tuners (wider, higher distributions), while
the LLM loop maintains low, stable latency across both settings. Right: Variable-rate experiment
(1P): evolution of min_granularity_ns over 10s cycles with two mid-run rate changes (dashes).
The LLM converges quickly, adapts at the change points, and re-stabilizes; Bayesian optimization
converges more slowly and the human expert adjusts conservatively but explores aggressively.

Figure (1| summarizes the results. On the left, we co-tune two antagonistic knobs (2P): if
min_granularity_ns is set too high it overrides latency_ns, skewing fairness and delaying short
tasks; because changing one can negate the other, co-tuning is typically worse than tuning either
in isolation. Consistent with this, BO and RL fall below the default under 2P (e.g., BO 58.09 ms
vs default 55.85 ms), whereas the LLM retains a positive margin (53.95 ms vs 55.85 ms). The right
plot tracks the evolution of min_granularity_ns over tuning cycles. RL methods exhibit erratic
jumps and fail to converge (skipped for clarity). BO is smoother but slow to settle. In contrast, the
LLM converges within 10 cycles, adjusts when workload intensity shifts, and re-stabilizes, closely
mirroring the human expert but with fewer missteps.

These differences stem from core limitations in classical methods. First, they lack semantic un-
derstanding: BO and RL explore parameter spaces blindly, unaware of structural constraints like
the dependency between latency_ns and min_granularity_ns. Second, their engineering cost is

high: reward function design, parameter discretization, and hyperparameter tuning all require deep
system and ML expertise. Finally, exploration is often unsafe: BO and RL may explore pathological
configurations (e.g., tiny timeslices) that hurt performance or destabilize the workload.

The LLM-based tuner overcomes these issues by emulating expert reasoning and, in practice, behaves
much like our human baseline. Both the human and the LLM consider the same auxiliary metrics
(throughput, IPC) and follow a similar pattern at change points: a coarse corrective move followed
by small, monotonic refinements. The LLM’s advantages are reaction time, smaller overshoot, and
safer exploration: it avoids obviously harmful regions (e.g., min_granularity_ns below ~2 ms in
our setup) and takes fewer, smaller steps to re-stabilize.

Quantitatively, in the variable-rate experiment the LLM outperforms the human overall and in each
phase: 46.24 ms vs 47.66 ms overall (+2.98%), 45.71 ms vs 47.40 ms at 300 tx/s (+3.57%), and
47.78 ms vs 48.40ms at 1100 tx/s (+1.29%). Against Bayesian optimization in the fixed-rate setting,
the LLM (Gemini 2.5 Flash) reduces p99 by 5.0% in 1-parameter tuning (47.16 ms vs 49.62 ms) and
by 7.1% in 2-parameter tuning (53.95 ms vs 58.09 ms), with consistently lower variance.

Based on the above insights (details in Appendix [B), we conclude that an LLM agent can offer a sig-
nificant outcome advantage over classical approaches and even human experts, while simultaneously
reducing the engineering effort required to build and deploy a production-ready tuner. While tightly
coupled to the application in this example, below we generalize this paradigm to an autonomous
agent architecture that can reason, explore, and act independently using tools and system state.

3 From Knob Tuner to Autonomous Agent

oS Metrics [Prompt |

A Workload [< LLM Humanitys 5. R [High-Level
-7 N B
1 vQ Agent &Re:;oni%g | Goal,
Overwrite —= = N
Scheduler | [Set System| — Run Monitoring |_4Manpages e
Policy Knob Tool on Workload| Docs Specific
! www @ Context

Figure 2: The architecture of an autonomous LLM-powered OS tuning agent. The agent can use
tools and resources to independently monitor the system, access knowledge, set system knobs, or
generate custom OS policies.

The tuner in our case study is reactive: it waits for metrics, then proposes a change, without indepen-
dent initiative. To progress toward autonomy, we are currently realizing the agentic architecture in
Fig. @ the LLM gains tool access to observe (e.g., iostat, perf, knob reads), act (e.g., knob writes,
policy deployment), and retrieve knowledge at runtime. With self-gathered evidence, the agent moves
beyond reactive tuning by forming testable hypotheses and running targeted experiments; for instance,
it can detect a NUMA-sensitive workload, pin processes to a node, and adjust memory reclaim
settings, then trial-measure—commit/rollback the change using host/server-side guardrails. We use
MCP for discovery and invocation of tools and resources; tool inputs are described via JSON Schema
and validated server-side (types/ranges), and we add semantic/unit checks beyond schema. We use
MCP’s logging channel and optional client-side elicitation for approvals. This mirrors an expert
workflow and reduces prompt brittleness—minor input changes leading to significantly different
LLM outputs—by grounding actions in schema-checked calls rather than free-form instructions.

A key advantage is that the loop is not tied to application-specific metrics. When app counters are
missing, the agent can (i) fall back to system-level proxies (e.g., IPC) and (ii) discover available app
metrics by listing MCP tools/resources (e.g., exporters or DB views). In our experiments, optimizing
IPC produced p99 comparable to optimizing p99 directly (Appendix [B.T), suggesting limited loss in
specificity. This generality suits multi-tenant settings with partial app metrics.

4 Discussion

Principled interaction and safety: Granting an agent raw shell access is brittle and unsafe: the
action surface is implicit and shifts over time; arguments lack schemas/units (easy typing/scale

errors); permissions collapse to coarse user/group levels; changes are rarely atomic (no clear apply/-
commit/revert); failures are non-deterministic with side effects; and logging is ad hoc. A production
tuner therefore needs (i) discoverable, typed actions, (ii) argument validation (types, units, ranges,
cross-field constraints), (iii) a reversible workflow (commit/revert), (iv) structured, end-to-end audit
logs, and (v) fine-grained permission/approval gates. These properties keep an LLM grounded, make
unsafe exploration rare and recoverable, and enable post-hoc forensics.

What MCP gives out of the box: The Model Context Protocol (MCP) is a standardized protocol
for Al agents to interact with external tools and data sources. It supplies the scaffolding: a JSON-
RPC data layer with server primitives—tools, resources, and prompts—discoverable via */1ist.
Tools advertise input schemas via JSON Schema; resources and prompts are discoverable with
typed metadata. Utilities include a structured logging channel and change-list notifications for
tools/resources/prompts; clients can also offer elicitation (user input/approval) and sampling (client-
mediated model calls). Transport (stdio or HTTP(S) with streaming) covers connection/auth, and
roots bind filesystem scope. MCP standardizes discovery, schemas, logging, and client UX hooks
across heterogeneous servers, reducing bespoke glue and avoiding unsafe shell fallbacks. We choose
MCEP over alternatives (e.g., gRPC, REST) as it provides agent-specific features: discovery, elicitation
workflows, and growing ecosystem adoption.

What we add on top: While MCP provides the foundational protocol layer, it does not define
domain-specific safety mechanisms. To operate safely in an OS setting, we propose layering additional
controls above MCP’s core protocol (details in Appendix [C): (1) a two-phase tuning flow where
set_cfs_params_staged(...) returns a token and a watchdog enforces guardrails, with the client
later calling commit (token) or revert (token) after measurement; (2) fine-grained permissions via
a host/server policy engine that evaluates tool name, caller identity, argument values, and target
scope (e.g., CPU/cgroup) with default-deny and per-tool rate limits/cooldowns; (3) approval gates
that use elicitation for human confirmation on sensitive actions, with optional auto-approval for
low-risk actions; (4) server-side semantic validation beyond JSON Schema to block out-of-band
jumps; (5) structured audit trails of calls, decisions, and metric snapshots keyed by run/epoch IDs and
idempotency keys (MCP and host logs) to enable replay; and telemetry exposed as MCP resources
(resources/{1list,read}) with typed tools that can attach ephemeral collectors for system metrics.

Cost and latency: LLM inference adds cost, but reduced engineering and faster convergence may
often offset it. Unlike BO/RL—which need reward engineering, discretization, and hyperparameter
tuning—LLM loops can be refined with lightweight programmatic prompting like DSPy [11]. In our
experiments, smaller models (e.g:, Gemini 2.5 Flash-Lite) exceeded classical tuners—and sometimes
larger models—at a fraction of cost/latency (Appendix [B.4). Decision latencies are compatible with
many OS tuning scenarios; continued improvements are likely to shrink this further [[1].

Limitations: Our evaluation validates core capabilities but not a full standalone agent; we decom-
pose the design into smaller, confirmed loops. Results reflect one hardware class, Linux 5.15, and
a TPC-C/PostgreSQL workload; broader external validity is open. Objectives emphasize p99 (and
IPC), leaving throughput/fairness/energy trade-offs underexplored. BO/RL baselines use reasonable
settings, but other discretizations/budgets may narrow gaps; the human baseline is n=1. Short 10 s
windows and workload noise can bias estimates; LLM nondeterminism/model drift affects repro-
ducibility. Next steps include lower-latency local models for sub-second loops, MCP-backed tool
synthesis from system docs, and multi-agent coordination across CPU/memory/storage/networking.

Future Work: This work unveils a promising paradigm, but also leaves several open directions.
(i) API-hosted model latencies constrain sub-second control loops; hybrid designs and smaller
local models are a path toward near-instant inference. (ii) MCP governs interactions, but tool
implementations still rely on human expertise; future work includes auto-generating and validating
tools from sources like manpages to create self-expanding agents. (iii) We focus on a single agent;
coordination among multiple agents (e.g., CPU, memory, storage, networking) requires negotiation
and conflict resolution to avoid pathological behaviors.

5 Conclusion

This paper presents an LLM-driven, agentic approach to OS tuning. In a CPU scheduler case study,
the LLM loop converges faster and more stably than BO/RL and a human expert, including under
dynamic workloads and two-parameter coupling. We also propose a reference architecture that equips

the model with tools for observation, action, and knowledge retrieval, using MCP for tool/resource
discovery, tool input schemas, structured logging, and elicitation, while layering permissions, approval
gates, and transaction/rollback in the host and server. Together, the results and design sketch point
toward safe, self-adapting OS control.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

(11]

(12]

[13]

(14]

[15]

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Celine
Lin, and Pavlo Molchanov. 2025. Small Language Models are the Future of Agentic Al. arXiv preprint
arXiv:2506.02153 (2025).

Romil Bhardwaj, Kirthevasan Kandasamy, Asim Biswal, Wenshuo Guo, Benjamin Hindman, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. 2023. Cilantro:{Performance-Aware } resource allocation for
general objectives via online feedback. In /7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23). 623-643.

Huilai Chen, Yuanbo Wen, Limin Cheng, Shouxu Kuang, Yumeng Liu, Weijia Li, Ling Li, Rui Zhang,
Xinkai Song, Wei Li, et al. 2024. AutoOS: make your OS more powerful by exploiting large language
models. In Forty-first International Conference on Machine Learning.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-Mauroux. 2013. 'OLTP-
Bench: An Extensible Testbed for Benchmarking Relational Databases. PVLDB 7, 4 (2013), 277-288.
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry
Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019.
The Design and Operation of CloudLab. In Proceedings of the USENIX Annual Technical Conference
(ATC). 1-14. https://www.flux.utah.edu/paper/duplyakin-atc19

Johannes Freischuetz, Konstantinos Kanellis, Brian Kroth, and Shivaram Venkataraman. 2025. Tuna:
Tuning unstable and noisy cloud applications. In Proceedings of the Twentieth European Conference on
Computer Systems. 954-973.

Victor Giannakouris-and Immanuel Trummer. 2025. A\-Tune: Harnessing Large Language Models for
Automated Database System Tuning. Proceedings of the ACM on Management of Data 3, 1 (2025), 1-26.

Lao Jiale, Wang Jianping, Chen Wanghu, Wang Yibo, Zhang Yunjia, Tang Mingjie, Li Yufei, Cheng
Zhiyuan, and Wang Jianguo. 2024. GPTuner: A Manual-Reading Database Tuning System via GPT-
Guided Bayesian Optimization. Proceedings of the VLDB Endowment 17, 8 (2024), 1939-1952.

Aditya K Kamath and Sujay Yadalam. 2024. Herding llamas: Using llms as an os module. arXiv preprint
arXiv:2401.08908 (2024).

Ajaykrishna Karthikeyan, Nagarajan Natarajan, Gagan Somashekar, Lei Zhao, Ranjita Bhagwan, Rodrigo
Fonseca, Tatiana Racheva, and Yogesh Bansal. 2023. {SelfTune}: Tuning Cluster Managers. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23). 1097-1114.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan,
Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. 2023. Dspy: Compiling declarative
language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714 (2023).

Brian Kroth, Sergiy Matusevych, Rana Alotaibi, Yiwen Zhu, Anja Gruenheid, and Yuanyuan Tian. 2024.
MLOS in Action: Bridging the Gap Between Experimentation and Auto-Tuning in the Cloud. Proceedings
of the VLDB Endowment 17, 12 (2024), 4269-4272.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. 2022. SMAC3: A Versatile Bayesian Optimization
Package for Hyperparameter Optimization. Journal of Machine Learning Research 23, 54 (2022), 1-9.
http://jmlr.org/papers/v23/21-0888.html

Kai Mei, Xi Zhu, Wujiang Xu, Wenyue Hua, Mingyu Jin, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang
Ge, and Yongfeng Zhang. 2024. Aios: Llm agent operating system. arXiv preprint arXiv:2403.16971
(2024).

The Linux Kernel Development Community. 2024. Completely Fair Scheduler (CFS). https://docs,
kernel.org/scheduler/sched-design-CFS.html

http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
https://www.flux.utah.edu/paper/duplyakin-atc19
http://jmlr.org/papers/v23/21-0888.html
https://docs.kernel.org/scheduler/sched-design-CFS.html
https://docs.kernel.org/scheduler/sched-design-CFS.html

[16] Immanuel Trummer. 2022. DB-BERT: a Database Tuning Tool that" Reads the Manual". In Proceedings
of the 2022 international conference on management of data. 190-203.

[17] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017. Automatic database
management system tuning through large-scale machine learning. In Proceedings of the 2017 ACM
international conference on management of data. 1009-1024.

[18] Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao, Siyuan Sheng, Andrew
Pavlo, and Geoffrey J Gordon. 2018. A demonstration of the ottertune automatic database management
system tuning service. Proceedings of the VLDB Endowment 11, 12 (2018), 1910-1913.

[19] Michael Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, and Jimmy Ba. 2023. Using Large Language
Models for Hyperparameter Optimization. In NeurlPS 2023 Foundation Models for Decision Making
Workshop. https://openreview.net/forum?id=FUdZ6HEOre

A Experimental Setup and Implementation Details

This section provides supplementary details on the system configuration, workload, and tuner
implementations used in our experiments.

System and Workload Configuration: All experiments were conducted on a dedicated machine
with 2x Intel Xeon Gold 6248R @ 3.00 GHz, 192 GB DDR4 RAM, 1 TB NVMe SSD running
Ubuntu 22.04 with Linux Kernel 5.15, hosted on Cloudlab [5]].

The workload consists of a Benchbase [4] implementation of the TPC-C benchmark running on a
PostgreSQL 14 database. The workload was configured with 4 warehouses, and driven by 16 client
threads to generate a consistent, high-throughput load on the system. The primary performance
objective was the minimization of p99 transaction tail latency, measured in milliseconds at the end of
each tuning iteration.

Set Scheduler
Parameters

Metrics
Workload Calculate
Reward Function

Figure 3: The typical online tuning loop used for all baseline methods. The Online Tuner component
is replaced by each of the different strategies (BO, RL, Human, LLM).

Tuner Implementation Details: Our general experimental setup follows the online tuning loop
shown in Figure[3] At each step, the tuner proposes a new configuration, which is applied to the live
system. The workload runs for a fixed duration of 10 seconds, after which performance metrics are
collected and fed back to the tuner.

Experiments overview: We run two experiment types. (i) Fixed-rate TPC-C: we evaluate both
single-parameter (1P) and dual-parameter (2P) tuning of min_granularity_ns and latency_ns.
(ii) Variable-rate TPC-C: a 1P loop on min_granularity_ns with a rate decrease from 1100 tx/s
to 300 tx/s after tuning cycle 75 which was reverted on tuning cycle 150 (the change points are
shown as dashes in the figures). In the variable-rate runs, latency_ns is set very low so that
min_granularity_ns governs timeslices.

Signals and observability: All tuners receive the scalar objective after each cycle. For experiment
(ii), the LLM and the human additionally see auxiliary system metrics (e.g., IPC via perf stat) and
application metrics (e.g., throughput) in the same textual interface (to simulate the on-demand tool
calling to gather additional context). Classical baselines use only the scalar reward unless that signal
is explicitly redefined (e.g., BO-IPC uses IPC as reward).

CFS Parameter Details: CFS aims to give every task a fair share of CPU time. We tuned: (a)
latency_ns, which sets a target period (in nanoseconds) over which every runnable task should run
at least once. The scheduler divides this latency by the number of running tasks to determine an
individual timeslice per core. (b) min_granularity_ns, which enforces a minimum timeslice (in
nanoseconds) a task will receive, regardless of the calculation above. It prevents excessive context
switching costs on systems with many tasks.

https://openreview.net/forum?id=FUdZ6HEOre

The interaction between these two parameters is non-trivial. If the number of tasks is high, the
calculated timeslice from latency_ns can fall below min_granularity_ns. In this case, the minimum
granularity takes precedence, which can cause the total scheduling period to exceed the target latency,
impacting application responsiveness. This is a key semantic relationship that traditional tuners often
fail to capture.

Parameter Ranges: latency_ns € [2ms, 100 ms], min_granularity_ns € [0.2 ms, 10 ms] (log-
spaced sampling).

Default values on Kernel 5.15 are latency_ns = 24 ms and min_granularity_ns = 3 ms.

A.1 Baselines

Bayesian Optimization (BO): As a representative Bayesian optimization method, we adopt
SMAC3 [I13]. We use its default acquisition function (Expected Improvement), random forest
surrogate model, and a fixed exploration-exploitation tradeoff. The optimization is constrained to
the same number of cycles as the LLM-based tuning loop to ensure fair budget usage. All runs are
seeded (default: 42) to ensure reproducibility. The SMACS3 tuner uses log-scale integer parameter
definitions and is configured with deterministic=False to account for evaluation noise. Its internal
intensifier races configurations aggressively using estimated costs.

Reinforcement Learning: We implement two reinforcement learning baselines: tabular Q-learning
and Deep Q-Networks (DQN). Both operate over a discretized parameter grid (8 bins per parameter,
logarithmically spaced), yielding a finite action space. The Q-learning tuner uses a 2D Q-table
initialized to zero, an e-greedy policy with e decaying from 1.0 to 0.1 at a rate of 0.995;-and a fixed
learning rate of 0.1. Rewards are scaled for stability and negated for minimization objectives.

The DQN agent is implemented in PyTorch, with a fully connected network consisting of three
hidden layers (each with 128 units and ReL.U activations), dropout (rate 0.1), and Adam optimizer
with a learning rate of 0.001. DQN maintains a replay buffer of size 1000 and trains using batches of
32. Target network updates occur every 10 steps. Exploration follows the same e-decay schedule as
tabular Q-learning. The state includes normalized parameter values, reward, iteration number, and
time since last change.

Human expert: PhD-level kernel practitioner with prior experience in scheduler tuning. Operates
in the same loop as the LLM (10 s cycles) with identical metrics and interface. Configuration changes
are made manually between cycles.

A.2 LLM Tuning Loop

Model(s) and latencies: We use gemini-2.5-flash via the hosted API. Unless noted, we use a
temperature of 0.5, which we found balances early-cycle exploration with stable later-cycle refinement.
The LLM operates conversationally, receiving performance metrics (objective and auxiliary) and
proposing new parameters in a continuous loop. No external tool calls are made during the loop
aside from metric ingestion. We also explore the use of two additional models: gemini-2.5-pro
and gemini-2.5-flash-lite. gemini-2.5-pro and gemini-2.5-flash use a thinking budget of ten
thousand tokens; gemini-2.5-flash-1lite does not support thinking.

Prompt template: The following is the initial prompt used to guide the LLM agent in the case of
the antagonistic knob co-tuning (2P). The conversation then continues with updates on performance
metrics and the agent’s replies, which include its reasoning and next suggested parameters. For
improving the performance of our prompt we relied on the guidelines defined by [19] for LLM-based
hyperparameter tuning.

Initial System Prompt for LLM Agent

You are a Linux kernel scheduler tuning expert with deep knowledge of the Completely Fair
Scheduler (CFS) and performance optimization. Your goal is to minimize p99 latency for a
database workload. You have a total of 200 iterations. The workload performance metrics
are NOISY, so do not overreact to single measurements; look for trends. (Optionally: Some
auxiliary metrics are provided; you may or may not use them.)

Tunable CFS parameters:

* min_granularity_ns: Minimum time slice before preemption. Lower values in-
crease responsiveness but also overhead.

* latency_ns: The target latency for all tasks to get a chance to run. Lower values
lead to more frequent scheduling.

Parameter Ranges (log-spaced):

* latency_ns: 2,000,000 to 100,000,000 nanoseconds

* min_granularity_ns: 200,000 to 10,000,000 nanoseconds
Your optimization strategy should be:

1. Early Cycles: Prioritize EXPLORATION. Test diverse values across the full range
as you see fit.

2. Later Cycles: Shift to EXPLOITATION. Refine configurations around promising
regions.

3. Adaptability: Monitor for extreme changes (e.g., sudden drops or spikes) and
increase exploration temporarily if detected.

I will provide performance data after each run. You must provide your analysis and the next
configuration to try. Respond ONLY in the format shown below, with no other text:

Analysis: <Your one or two-sentence decision reasoning>
Config: { "latency_ns": <int>, "min_granularity_ns": <int>}

Conversational Update Prompt Schema for LLM Agent

Window: <int>
Config: { "latency_ns": <int>, "min_granularity_ns": <int> }
Reward: { "p_99_latency": <int> }

Latest configuration:

Window: <int>

Config: { "latency_ns": <int>, "min_granularity_ns": <int> }

Reward: { "p_99_latency": <int> }

Auxiliary Metrics (optional): { "IPC": <float>, "Throughput": <int>, ...}

Provide your analysis and the next configuration to try based on the provided format template.

Agent Response Schema

"analysis": "one or two sentences",
"config": { "latency_ns": <int>, "min_granularity_ns": <int>}

B Extended Results and Discussion

B.1 Convergence and Stability

We report application p99 latency (ms; lower is better) and improvement over the default config-
uration (%), broken down by: (i) tuner type (Fixed, Bayesian, RL, LLM variants), (ii) parameter
dimensionality (1P vs 2P), and (iii) time windows (All, 0-20, 20-50, 150-200 cycles). The "Params"
column denotes the number of tuned knobs; "1 (IPC)" reports p99 when BO optimizes IPC as a proxy.

Discussion:

1P tuning. All methods beat the default, but LLMs lead. Flash attains 47.16 ms (-15.6%), Flash-Lite
47.67 ms (-14.7%), and Pro 48.34 ms (-13.4%), versus BO at 49.62 ms (-11.2%). In absolute terms,

Table 1: Performance Comparison of All Tuning Methods for different tuning cycle snapshots. All
p99 latency values are in milliseconds (ms). A% shows the percentage difference over the default
(Fixed) configuration (< 0 is better.)

All 0-20 20-50 150-200
Tuner type Params p99 A% p99 A% P99 A% p99 A%
Fixed 0 55.85 — 55.90 — 55.78 — 56.22 —
2.5 Flash 1 47.16 -1555 47.58 -14.88 46.83 -16.04 47.64 -1527
2.5 Flash 2 5395 -3.39 5541 -0.89 52.26 -6.31 54.67 -2.75
2.5 Flash Lite 1 47.67 -14.65 48.65 -12.97 46,50 -16.64 47.77 -15.03
2.5 Flash Lite 2 53.13 -4.87 59.03 5.61 52.06 -6.66 52.51 -6.59
2.5 Pro 1 48.34 -1344 49.07 -12.22 46.19 -17.20 49.12 -12.63
2.5 Pro 2 5572 -0.22 56.75 1.52 54.67 -1.99 56.23 0.02
Bayesian 1 49.62 -11.15 49.77 -10.97 49.16 -11.87 49.83 -11.37
Bayesian 2 58.09 401 64.71 15.76 60.17 7.87 59.60 6.01
Bayesian 1(IPC) 49.52 -11.33 49.72 -11.07 48.81 -12.49 49.87 /-11.30
DQN 1 49.64 -11.12 4939 -11.65 4890 -12.34 4996 -11.13
DQN 2 6298 12.78 63.17 13.00 6590 18.14 60.60 7.80
Q-learning 1 49.17 -11.96 49.71 -11.08 4885 -12.42 4921 -12.47
Q-learning 2 61.60 1030 64.41 1521 66.05 18.40 5743 2.16

Flash improves on BO by 2.46 ms (-5.0% vs BO). Windowed results are consistent: LLMs maintain
-13% to -17% across 0-20 / 20-50 / 150-200, showing fast and maintainable convergence.

2P co-tuning of antagonistic knobs. Classical tuners degrade below the default: BO 58.09 ms
(+4.0%), DQN 62.98 ms (+12.8%), Q-learning 61.60 ms (+10.3%), while LLMs lead to reduced
latency: Flash-Lite 53.13 ms (-4.9%), Flash 53.95 ms (-3.4%), Pro 55.72 ms (-0.2%). Relative to
BO, Flash reduces p99 by 4.14 ms (7.1%). Temporal slices show why: early (0-20), BO is 64.71 ms
(+15.8% vs default) whereas Flash is 55.41 ms (-0.9%), a 9.30 ms gap. Mid/late windows keep
sizeable margins (7.91 ms / 13.1% and 4.93 ms /:8.3%). Flash-Lite briefly dips early (+5.6%) but
recovers strongly (-6.6%, -6.6%).

Proxy objective. BO optimized for IPC (49.52'ms; -11.3%) closely matches BO with a p99 objective
(49.62 ms; -11.2%), indicating that in this setup a system-level proxy can preserve application tail
latency—supporting the decision to rely on system-level proxy objectives when application metrics
are unavailable.

Takeaways. (i) For single-knob tuning, lightweight LLMs (Flash-Lite/Flash) deliver the best p99.
(i1) Under antagonistic co-tuning, LLMs retain positive gains while BO/RL regress below default,
suggesting that semantic priors help avoid override pathologies. (iii) BO’s early-phase instability in
2P explains much of its deficit; LLMs reach good regions faster and hold them. Our observations
align with the variable-rate experiment (Fig. [I] right), where the LLM adapts sooner than the human
expert while avoiding large missteps.

B.2 Variable Request Rates

We evaluate a variable-rate, single-parameter tuning loop (i.e., min_granularity_ns); latency_ns
is set at 0.1 ms'so it is always overridden by min_granularity_ns. The request rate steps between
two steady states—300 and 1100 tx/s—with a mid-run reduction and subsequent restoration. Table 2]
reports application p99 latency (ms; lower is better) and the percent improvement relative to a human
expert within each rate window and overall.

Discussion: Overall and by phase, the LLM attains the best p99: 46.24 ms overall (-2.98% vs
human), 45.71 ms at 300 tx/s (-3.57%), and 47.78 ms at 1100 tx/s (-1.29%). Relative to BO, the LLM
reduces p99 by 3.04 ms overall (-6.17%), 3.76 ms at 300 tx/s (-7.60%), and 0.94 ms at 1100 tx/s
(-1.93%). Q-learning approaches the LLM at high load (47.91 ms; 0.13 ms higher latency) but lags at
the lower rate; BO and DQN trail the human across windows.

Fig.[T] (right) shows why: at each rate change (dashed lines) both the LLM and the human execute a
coarse adjustment followed by small refinements and a return toward the prior good setting when the

Table 2: Variable-rate tuning (1P). p99 latency (ms) and percent improvement vs human expert within
each phase (300 and 1100 tx/s) and overall. The loop tunes min_granularity_ns while latency_ns
is fixed. A% shows the percentage difference versus the Human tuner (< 0 is better.)

All 300 tx/s 1100 tx/s
Tuner type p99 (ms) A% p99(ms) A% p99 (ms) A%
Human 47.66 — 47.40 — 48.40 —
LLM 46.24 -2.98 4571 -3.57 4778 -1.29
Bayesian 49.28 3.40 4947 4.36 48.72 0.67
DQN 4958 4.04 4947 4.37 49.89 3.09

Q-learning 48.88 2.56 49.21 3.81 4791 -1.01

rate is restored, but the LLM reacts earlier (using multiple signals such as throughput and IPC), takes
fewer/smaller steps, and exhibits shorter re-stabilization. In contrast, RL methods displayed large,
frequent reversals in min_granularity_ns—including excursions into unsafe, very small timeslices—
which elongate recovery (their trajectories are omitted from the plot for clarity). The gains are largest
at 300 tx/s, and remain positive at 1100 tx/s.

B.3 Agent Response Times

We measured end-to-end API latency (including network) over 200 iterations using the same prompt
schema and temperature 0.5 as in the main experiments.

Table 3: LLM response latency (seconds) for 200 requests.

LLM model Thinking pS0(s) p95 (s)
Gemini 2.5 Pro v 18.63 61.90
Gemini 2.5 Flash v 13.76 32.00
Gemini 2.5 Flash Lite X 1.25 4.52

Discussion: Thinking/reasoning models incur substantially higher latency (e.g., Pro at 18.63 s p50)
due to extra compute for multi-step generation and larger outputs. Flash-Lite comfortably fits 10s
control cycles; Flash and Pro are better suited to longer cycles (or tolerating a one-cycle lag) and
benefit from tiered use (Lite by default, escalate at change points). Latency scales with prompt/history
length; context controls and structured I/O reduce both latency and cost in practice (see Section [B.4).

B.4 Agent Cost Analysis

Table 4: End-to-end inference cost over 200 iterations.

Model Input (M) Output (M) Total Cost ($) Cost/Iter ($)
No context cap

Gemini 2.5 Pro 3.38 0.23 6.51 0.0326
Gemini 2.5 Flash 3.11 0.19 1.40 0.0070
Gemini 2.5 Flash-Lite 3.14 0.01 0.32 0.0016
50-iteration context cap

Gemini 2.5 Pro 1.46 0.23 4.10 0.0205
Gemini 2.5 Flash 1.34 0.19 0.87 0.0043
Gemini 2.5 Flash-Lite 1.35 0.01 0.14 0.0007

Setup & pricing: All costs use paid-tier list prices (as of August 14, 2025) over 200 iterations: Pro:
input $1.25/M, output (incl. thinking) $10.00/M; Flash: input $0.30/M, output $2.50/M; Flash-Lite:
input $0.10/M, output $0.40/M. Pro and Flash have a thinking budget of ten thousand tokens per
request. In practice, only a fraction of that budget is used.

10

Discussion: Keeping the full conversation history is usually impractical; capping the conversa-
tion window to the last 50 iterations reduces total cost by ~37% for Pro (6.51to4.10) and Flash
(1.401t0 0.87), and by 56% for Flash-Lite (0.32to 0.14). In steady-state 10 s loops (8,640 iters/day),
this comrresponds to approximate daily spend of $282 to $177 (Pro), $60 to $37 (Flash), and $14 to $6
(Lite)

For further improving cost/latency, several techniques could be used for the OS tuning agent: (i)
Sliding window to bound input tokens; (ii) Summarize stale history into a compact state vector
(e.g., current knob values, last k£ metrics, change rationale); (iii) Tool-first state via MCP: store
metrics/configs server-side and pass handles/IDs instead of raw text; (iv) Structured I/O (JSON-
only outputs) to cut verbose generations; (v) Tiered models: default to a lightweight model (e.g.,
Flash-Lite) and escalate to a larger model only on change points or when improvement stalls.

For simple knob tuning with short context, lightweight models are both effective and cost-efficient,
and should be preferred. For complex action spaces (multi-subsystem tuning, code synthesis such as
eBPF, or long-horizon reasoning), small models with short context may struggle—whether tiered
control or fine-tuned local models close this gap remains an open question for future work.

C System Sketch Example: Scheduler MCP Server

We sketch a concrete, MCP-aligned design for a scheduler server that fulfills the safety requirements
for a production tuner outlined in the Discussion (discoverable actions, validation, reversibility,
audit logs, and permission/approval gates). The agent acts as an MCP client; OS, application,
and observability backends are MCP servers. Servers expose primitives (tools/resources/prompts)
discoverable via */1ist; tool inputs use JSON Schema (types/ranges) and we add unit normalization
& semantic checks server-side; calls are logged via the MCP logging channel. When a human
decision is required, the host can use elicitation to obtain approval. Transactional flows, guardrails,
and policy/approvals are layered in our server/host; they are not part of MCP itself.

Overview with example: An agent discovers tools via tools/list, reads the schema
for os.scheduler/set_cfs_params_staged, Stages min_granularity_ns=2,000,000, measures
os.scheduler/metrics/p99_latency, then commits or reverts—producing structured logs through-
out. A server-side watchdog monitors staged changes and can auto-revert if TTL expires or safety
thresholds are breached. This replaces the brittle use of the shell with discoverable, schema-checked
calls and a reversible workflow.

Typed tools (server-defined): The scheduler server offers tools for controlled CFS updates using a
safe two-phase pattern:

(1) Stage change: os.scheduler/set_cfs_params_staged(latency_ns?, min_granularity_ns,
scope?, ttl_sec?, idempotency_key?) — returns change_token. Inputs are validated via JSON
Schema (required fields; integer types; unit normalization to ns; range checks, e.g., latency_ns €
[2e6, 1e8], min_granularity_ns € [2e5, 1e7]). The server enforces cross-field constraints (e.g.,
relationships between min_granularity_ns and latency_ns). The optional scope (e.g., cpus: [0-3],
cgroup: /workload/db) narrows the target. Long-running actions may emit progress via notifications.
Beyond JSON Schema validation, the server could perform semantic checks (e.g., blocking >50%
parameter jumps) to prevent pathological configurations.

(2) Finalize change: After measurement (and any required approval via elic-
itation), the host/agent decides whether to make the staged settings perma-
nent with os.scheduler/commit_cfs_params(change_token) or discard them with
os.scheduler/revert_cfs_params(change_token).

Example tools/call payload:

"jsonrpc": "2.0",

"id": 1,

"method": "tools/call",

"params": {
"name": "os. scheduler/set_cfs_para.ms_staged" s
"arguments": {

'Derived from Table numbers rounded.

11

"min_granularity_ns": 2000000,
"latency_ns": 24000000,
"scope": {"cpus": [0,1,2,3]},
"ttl_sec": 60,
"idempotency_key": "tune-cycle-42"
}
}

The staged/commit/revert semantics, guardrails, TTLs, and idempotency_key are server/host con-
ventions; MCP provides discovery (tools/list), invocation (tools/call), and schema-based input
validation.

Permissions, approvals, and audit (host/server layered): Before tool execution, the host policy
engine enforces default-deny, fine-grained authorization over fool name (e.g., os.scheduler/*),
caller identity/role (e.g., agent:llm-tuner, role:cfs-writer), argument constraints (e.g.,
min_granularity_ns > 1 ms), and target scope (CPUs/cgroups). Sensitive actions require an elicita-
tion approval (confirm/deny with optional justification); low-risk actions may be auto-approved with
rate limits/cooldowns to prevent oscillation. The server emits structured records (tool, validated args,
caller, change_token, decision, metrics snapshot, run/epoch ID) via the MCP logging channel; the
host mirrors these into its own logs for end-to-end traceability and deterministic replay.

Readable resources: To ground decisions without relying on the shell, the server publishes typed,
read-only resources, €.g., os.scheduler/metrics/p99_latency, os.scheduler/metrics/ipc, and
current CFS settings. The agent retrieves them via resources/read (and, if implemented, server-
specific streaming/subscription). Temporary collectors (e.g., PMCs) are managed by tools that
start/stop ephemeral collectors (with TTL), surfacing their outputs as resources.

Error handling and recovery: The system provides deterministic failure modes and clear recovery
paths: Schema violations (JSON Schema validation errors with field/constraint details); Unknown
tool/field (JSON-RPC “method not found” / validation error); Authorization denials (host policy re-
fusal with reason); Timeouts/crashes (server-enforced TTL auto-reverts uncommitted change_tokens).
MCEP furnishes the request/response/error envelope; authorization, guardrails, and auto-revert are
layered in the server/host.

Composition: Servers are namespaced (e.g.; os:scheduler, observability.perf, db.postgres)
and compose under MCP’s uniform call model. As the scheduler server evolves (e.g., batching or
richer transactions), the agent interface remains stable—capabilities are discovered via */1ist and
validated by published schemas; host/server policies continue to govern permissions and approvals
outside MCP.

Performance considerations: ' Tool invocation, schema validation, and logging add negligible
overhead relative to multi-second tuning cycles, while the staged commit/revert pattern introduces
only temporary state on the server. This governance cost is small compared to the safety and
debuggability it provides.

12

	Introduction
	Mini Case Study: LLM Tuning Loop vs Classical Tuners
	From Knob Tuner to Autonomous Agent
	Discussion
	Conclusion
	Experimental Setup and Implementation Details
	Baselines
	LLM Tuning Loop

	Extended Results and Discussion
	Convergence and Stability
	Variable Request Rates
	Agent Response Times
	Agent Cost Analysis

	System Sketch Example: Scheduler MCP Server

